Top 5 Tools for network security monitoring

Security data can be found on virtually all systems in a corporate network. However, all systems do not provide equally valuable security context. While monitoring everything would be ideal, this is impractical for most organizations due to resource constraints. So what data sources should you prioritize to make the most of your monitoring efforts?

When it comes to security monitoring, context is the key. The more relevant security context you have, the more likely it is you will successfully detect real security incidents while weeding out false positives (e.g. non-threats). In determining which devices and systems to monitor for security data, the first priority is to give yourself as much useful context as possible.

Based on a decade of monitoring experience, SecureWorks believes the top five sources of security context are:

Number One: Network-based Intrusion Detection and Prevention Systems (NIDS/NIPS)

NIDS and NIPS devices use signatures to detect security events on your network. Performing full packet inspection of network traffic at the perimeter or across key network segments, most NIDS/NIPS devices provide detailed alerts that help to detect:

  • Known vulnerability exploit attempts
  • Known Trojan activity
  • Anomalous behavior (depending on the IDS/IPS)
  • Port and Host scans

Number Two: Firewalls

Serving as the network’s gatekeeper, firewalls allow and log incoming and outgoing network connections based on your policies. Some firewalls also have basic NIDS/NIPS signatures to detect security events. Monitoring firewall logs and alerts helps to detect:

  • New and unknown threats, such as custom Trojan activity
  • Port and Host scans
  • Worm outbreaks
  • Minor anomalous behavior
  • Most any activity denied by firewall policy

Number Three: Host-based Intrusion Detection and Prevention Systems (HIDS/HIPS)

Like NIDS/NIPS, host-based intrusion detection and prevention systems utilize signatures to detect security events. But instead of inspecting network traffic, HIDS/HIPS agents are installed on servers to directly alert on security activity. Monitoring HIDS/HIPS alerts helps to detect:

  • Known vulnerability exploit attempts
  • Console exploit attempts
  • Exploit attempts performed over encrypted channels
  • Password grinding (manual or automated attempts to guess passwords)
  • Anomalous behavior by users or applications

Number Four: Network Devices with Access Control Lists (ACLs)

Network devices that can use ACLs, such as routers and VPN servers, have the ability to control network traffic based on permitted networks and hosts. Monitoring logs from devices with ACLs helps to detect:

  • New and unknown threats, such as custom Trojan activity
  • Port and Host scans
  • Minor anomalous behavior
  • Most anything denied by the ACL’s

Number Five: Server and Application Logs

Many types of servers and applications log events such as login attempts and user activity. Depending on the extent of logging capabilities, monitoring server and application logs can help to detect:

  • Known and unknown exploit attempts
  • Password Grinding
  • Anomalous behavior by users or applications

It is important to understand that the incremental value of a data source will vary from situation to situation. A source’s purpose, its location in your network and the quality of the data it provides are a few of the many variables that must be considered when planning your security monitoring strategy.

Keep in mind that there are many other security technologies, network devices and log sources throughout your IT environment that may also provide beneficial context to your security monitoring efforts. For example, Unified Threat Management (UTM) devices which combine firewall, NIDS/NIPS and other capabilities onto a single device can be monitored to detect similar events as standalone firewalls and NIDS/NIPS devices.

By monitoring the assets that provide the highest value security context, you can optimize security monitoring efforts. Doing so will provide faster, more accurate detection of threats while making the most of your security resources. For additional information on monitoring security events and other security topics, please visit theSecureWorks website.

 

Featured Gartner Research:

What Organizations are Spending on IT Security

According to research and advisory firm Gartner Inc., “Many CIOs and chief information security officers (CISOs) are uncertain about what is a ‘normal’ level of security spending in terms of a percentage of the overall IT budget – especially during economic uncertainty.” This research note will help IT managers understand how organizations are investing in their information security and compare their spending with that of their peers.

View the complimentary Gartner report made available to you by SecureWorks.

 

Security 101: Web Application Firewalls

What is a Web Application Firewall?
A web application firewall (WAF) is a tool designed to protect externally-facing web applications used for online banking, Internet retail sales, discussion boards and many other functions from application layer attacks such as cross-site scripting (XSS), cross-site request forgery (XSRF) and SQL injection. Because web application attacks exploit flaws in application logic that is often developed internally, each attack is unique to its target application. This makes it difficult to detect and prevent application layer attacks using existing defenses such as network firewalls and NIDS/NIPS.

How do WAFs Work?
WAFs utilize a set of rules or policies to control communications to and from a web application. These rules are designed to block common application layer attacks. Architecturally, a WAF is deployed in front of an application to intercept communications and enforce policies before they reach the application.

What are the Risks of Deploying a WAF?

Depending on the importance of the web application to your business, the risk of experiencing false positives that interrupt legitimate communications can be a concern. To provide sound protection with minimal false positives, WAF rules and policies must be tailored to the application(s) the WAF is defending. In many cases, this requires significant up-front customization based on in-depth knowledge of the application in question. This effort must also be maintained to address modifications to the application over time.

What are the Benefits of Deploying a WAF?

A WAF can be beneficial in terms of both security and compliance. Applications are a prime target for today’s hackers. Also, the Payment Card Industry (PCI) Data Security Standard requires companies who process, store or transmit payment card data to protect their externally-facing web applications from known attacks (Requirement 6.6). If managed properly and used in conjunction with regular application code reviews, vulnerability testing and remediation, WAFs can be a solid option for protecting against web application attacks and satisfying related compliance requirements.

 

Reference: http://www.secureworks.com/resources/newsletter/2008-07/

NIDS (Network Intrusion Detection System) and NIPS (Network Intrusion Prevention System)

NIDS and NIPS (Behavior based, signature based, anomaly based, heuristic)

An intrusion detection system (IDS) is software that runs on a server or network device to monitor and track network activity. By using an IDS, a network administrator can configure the system to monitor network activity for suspicious behavior that can indicate unauthorized access attempts. IDSs can be configured to evaluate system logs, look at suspicious network activity, and disconnect sessions that appear to violate security settings.

IDSs can be sold with firewalls. Firewalls by themselves will prevent many common attacks, but they don’t usually have the intelligence or the reporting capabilities to monitor the entire network. An IDS, in conjunction with a firewall, allows both a reactive posture with the firewall and a preventive posture with the IDS.

In response to an event, the IDS can react by disabling systems, shutting down ports, ending sessions, deception (redirect to honeypot), and even potentially shutting down your network. A network-based IDS that takes active steps to halt or prevent an intrusion is called a network intrusion prevention system (NIPS). When operating in this mode, they are considered active systems.

Passive detection systems log the event and rely on notifications to alert administrators of an intrusion. Shunning or ignoring an attack is an example of a passive response, where an invalid attack can be safely ignored. A disadvantage of passive systems is the lag between intrusion detection and any remediation steps taken by the administrator.

Intrusion prevention systems (IPS) like IDSs follows the same process of gathering and identifying data and behavior, with the added ability to block (prevent) the activity.

A network-based IDS examines network patters, such as an unusual number or requests destined for a particular server or service, such as an FTP server. Network IDS systems should be located as upfront as possible, e.g. on the firewall, a network tap, span port, or hub, to monitor external traffic. Host IDS systems on the other hand, are placed on individual hosts where they can more efficiently monitor internally generated events.

Using both network and host IDS enhances the security of the environment.

Snort is an example of a network intrusion detection and prevention system. It conducts traffic analysis and packet logging on IP networks. Snort uses a flexible rule-based language to describe traffic that it should collect or pass, and a modular detection engine.

Network based intrusion detection attempts to identify unauthorized, illicit, and anomalous behavior based solely on network traffic. Using the captured data, the Network IDS processes and flags any suspicious traffic. Unlike an intrusion prevention system, an intrusion detection system does not actively block network traffic. The role of a network IDS is passive, only gathering, identifying, logging and alerting.

Host based intrusion detection system (HIDS) attempts to identify unauthorized, illicit, and anomalous behavior on a specific device. HIDS generally involves an agent installed on each system, monitoring and alerting on local OS and application activity. The installed agent uses a combination of signatures, rules, and heuristics to identify unauthorized activity. The role of a host IDS is passive, only gathering, identifying, logging, and alerting. Tripwire is an example of a HIDS.

There are no fully mature open standards for ID at present. The Internet Engineering Task Force (IETF) is the body which develops new Internet standards. They have a working group to develop a common format for IDS alerts.

The following types of monitoring methodologies can be used to detect intrusions and malicious behavior: signature, anomaly, heuristic and rule-based monitoring.

A signature based IDS will monitor packets on the network and compare them against a database of signatures or attributes from known malicious threats. This is similar to the way most antivirus software detects malware. The issue is that there will be a lag between a new threat being discovered in the wild and the signature for detecting that threat being applied to your IDS.

A network IDS signature is a pattern that we want to look for in traffic. Signatures range from very simple – checking the value of a header field – to highly complex signatures that may actually track the state of a connection or perform extensive protocol analysis.

An anomaly-based IDS examines ongoing traffic, activity, transactions, or behavior for anomalies (things outside the norm) on networks or systems that may indicate attack. An IDS which is anomaly based will monitor network traffic and compare it against an established baseline. The baseline will identify what is “normal” for that network, what sort of bandwidth is generally used, what protocols are used, what ports and devices generally connect to each other, and alert the administrator when traffic is detected which is anomalous to the baseline.

A heuristic-based security monitoring uses an initial database of known attack types but dynamically alters their signatures base on learned behavior of network traffic. A heuristic system uses algorithms to analyze the traffic passing through the network. Heuristic systems require more fine-tuning to prevent false positives in your network.

A behavior-based system looks for variations in behavior such as unusually high traffic, policy violations, and so on. By looking for deviations in behavior, it is able to recognize potential threats and respond quickly.
Similar to firewall access control rules, a rule-based security monitoring system relies on the administrator to create rules and determine the actions to take when those rules are transgressed.

References:
http://netsecurity.about.com/cs/hackertools/a/aa030504.htm
http://www.sans.org/security-resources/idfaq/
• CompTIA Security+ Study Guide: Exam SY0-301, Fifth Edition by Emmett Dulaney
• Mike Meyers’ CompTIA Security+ Certification Passport, Second Edition by T. J. Samuelle

http://neokobo.blogspot.com/2012/01/118-nids-and-nips.html